Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.815
Filter
1.
Hereditas ; 161(1): 12, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566171

ABSTRACT

The Huanglian-Hongqu herb pair (HH) is a carefully crafted traditional Chinese herbal compound designed to address disorders related to glucose and lipid metabolism. Its primary application lies in treating hyperlipidemia and fatty liver conditions. This study explored the potential mechanism of HH in treating non-alcoholic fatty liver disease (NAFLD) through network pharmacology, molecular docking, and in vivo animal experiments. Ultrahigh performanceliquid chromatography-quadrupole/orbitrapmass spectrometry (UPLC-Q-TOF-MS) was employed to identify the chemical composition of HH. Network pharmacology was used to analyze the related signaling pathways affected by HH. Subsequently, the prediction was verified by animal experiment. Finally, we identified 29 components within HH. Network pharmacology unveiled interactions between HH and 153 NAFLD-related targets, highlighting HH's potential to alleviate NAFLD through NF-κB signaling pathway. Molecular docking analyses illuminated the binding interactions between HH components and key regulatory proteins, including NF-κB, NLRP3, ASC, and Caspase-1. In vivo experiments demonstrated that HH alleviated NAFLD by reducing serum and liver lipid levels, improving liver function, and lowering inflammatory cytokine levels in the serum. Moreover, HH administration downregulated mRNA and protein levels of the NF-κB/NLRP3 pathway. In conclusion, our findings demonstrated that HH has potential therapeutic benefits in ameliorating NAFLD by targeting the NF-κB/NLRP3 pathway, facilitating the broader application of HH in the field of NAFLD.


Subject(s)
Drugs, Chinese Herbal , NF-kappa B , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Molecular Docking Simulation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Network Pharmacology
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1587-1593, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621943

ABSTRACT

This study aims to explore the effect of Zuogui Jiangtang Qinggan Formula(ZGJTQGF) on the lipid metabolism in the db/db mouse model of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD) via the insulin receptor(INSR)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)/sterol-regulatory element-binding protein 2(SREBP-2) signaling pathway. Twenty-four db/db mice were randomized into positive drug(metformin, 0.067 g·kg~(-1)) and low-(7.5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) ZGJTQGF groups. Six C57 mice were used as the blank group and administrated with an equal volume of distilled water. The mice in other groups except the blank group were administrated with corresponding drugs by gavage for 6 consecutive weeks. At the end of drug administration, fasting blood glucose(FBG) and blood lipid levels were measured, and oral glucose tolerance test was performed. Compared with the blank group, the mice treated with ZGJTQGF showed decreased body mass and liver weight coefficient, lowered levels of FBG, total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL), and weakened liver function. The pathological changes and lipid accumulation in the liver tissue were examined. Western blot was employed to measure the protein levels of INSR, AMPK, p-AMPK, and SREBP-2. Compared with the blank group, the model group showed down-regulated protein levels of INSR and p-AMPK/AMPK and up-regulated protein level of SREBP-2. Compared with the model group, high-dose ZGJTQGF up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2. Low-dose ZGJTQGF slightly up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2, without significant differences. The results suggested that ZGJTQGF may alleviate insulin resistance and improve lipid metabolism in db/db mice by activating the INSR/AMPK/SREBP-2 signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Lipid Metabolism , AMP-Activated Protein Kinases/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Liver , Lipids
3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1611-1620, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621946

ABSTRACT

This study investigated the protective effect of tanshinone Ⅱ_A(TSⅡ_A) on the liver in the rat model of non-alcoholic fatty liver disease(NAFLD) and the mechanism of TSⅡ_A in regulating ferroptosis via the nuclear factor E2-related factor 2(Nrf2) signaling pathway. The rat model of NAFLD was established with a high-fat diet for 12 weeks. The successfully modeled rats were assigned into model group, low-and high-dose TSⅡ_A groups, and inhibitor group, and normal control group was set. Enzyme-linked immunosorbent assay was employed to determine the content of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum of rats in each group. A biochemical analyzer was used to measure the content of aspartate aminotransferase(AST), alaninl aminotransferase(ALT), total cholesterol(TC), and triglycerides(TG). Hematoxylin-eosin(HE) staining was used to detect pathological damage in liver tissue. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling(TUNEL) was employed to examine the apoptosis of the liver tissue. Oil red O staining, MitoSOX staining, and Prussian blue staining were conducted to reveal lipid deposition, the content of reactive oxygen species(ROS), and iron deposition in liver tissue. Western blot was employed to determine the expression of Nrf2, heme oxygenase-1(HO-1), glutathione peroxidase 4(GPX4), ferroptosis suppressor protein 1(FSP1), B cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) in the liver tissue. The result showed that TSⅡ_A significantly reduced the content of MDA, AST, ALT, TC, and TG in the serum, increased the activity of SOD, decreased the apoptosis rate, lipid deposition, ROS, and iron deposition in the liver tissue, up-regulated the expression of Nrf2, HO-1, FSP1, GPX, and Bcl-2, and inhibited the expression of Bax in the liver tissue of NAFLD rats. However, ML385 partially reversed the protective effect of TSⅡ_A on the liver tissue. In conclusion, TSⅡ_A could inhibit ferroptosis in the hepatocytes and decrease the ROS and lipid accumulation in the liver tissue of NAFLD rats by activating the Nrf2 signaling pathway.


Subject(s)
Abietanes , Ferroptosis , Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , bcl-2-Associated X Protein/metabolism , Reactive Oxygen Species/metabolism , Liver , Signal Transduction , Triglycerides/metabolism , Superoxide Dismutase/metabolism , Iron/metabolism
4.
Eur J Med Chem ; 270: 116358, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38574638

ABSTRACT

The fatty acid-binding protein 1 (FABP1) is a fatty acid transporter protein that is considered as an emerging target for metabolic diseases. Despite forceful evidence that the inhibition of FABP1 is essential for ameliorating NASH, pharmacological control and validation of FABP1 are hindered by a lack of relevant inhibitors as pharmacological tool. Therefore, the development of effective FABP1 inhibitors is a current focus of research. Herein, we firstly reported the comprehensive structure-activity relationship (SAR) study of novel FABP1 inhibitors derived from high throughput screening of our in-house library, which resulting in the identification of the optimal compound 44 (IC50 = 4.46 ± 0.54 µM). Molecular docking studies revealed that 44 forms stable hydrogen bonds with amino acids around the active pocket of FABP1. Moreover, 44 alleviated the typical histological features of fatty liver in NASH mice, including steatosis, lobular inflammation, ballooning and fibrosis. Additionally, 44 has been demonstrated to have lipid metabolism regulating, anti-oxidative stress and hepatoprotective properties. This study might be provided a promising insight into the field of NASH and inspiration for the development of FABP1 inhibitors.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Molecular Docking Simulation , Lipid Metabolism , Fibrosis , Fatty Acid-Binding Proteins/metabolism , Liver/metabolism
5.
Biochem Biophys Res Commun ; 710: 149882, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38583231

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease associated with type 2 diabetes mellitus (T2D). NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and even cancer, all of which have a very poor prognosis. Semaglutide, a novel glucagon-like peptide-1 (GLP-1) receptor agonist, has been recognized as a specific drug for the treatment of diabetes. In this study, we used a gene mutation mouse model (db/db mice) to investigate the potential liver-improving effects of semaglutide. The results showed that semaglutide improved lipid levels and glucose metabolism in db/db mice. HE staining and oil red staining showed alleviation of liver damage and reduction of hepatic lipid deposition after injection of semaglutide. In addition, semaglutide also improved the integrity of gut barrier and altered gut microbiota, especially Alloprevotella, Alistpes, Ligilactobacillus and Lactobacillus. In summary, our findings validate that semaglutide induces modifications in the composition of the gut microbiota and ameliorates NAFLD, positioning it as a promising therapeutic candidate for addressing hepatic steatosis and associated inflammation.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glucagon-Like Peptides , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Lipids/pharmacology , Mice, Inbred C57BL
6.
Lipids Health Dis ; 23(1): 95, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566209

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease that affects over 30% of the world's population. For decades, the heterogeneity of non-alcoholic fatty liver disease (NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic metabolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabolism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target metabolic disorders.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Lipid Metabolism
7.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612992

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could restore their liver function and regulate oxidative stress. Compared to mice in the model group, the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance.


Subject(s)
Gastrointestinal Microbiome , Hypercholesterolemia , Insulin Resistance , Lactobacillus plantarum , Non-alcoholic Fatty Liver Disease , Humans , Male , Animals , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Fructose , Inflammation/drug therapy
8.
Elife ; 132024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619504

ABSTRACT

The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.


Non-alcoholic steatohepatitis, also known as NASH, is a severe condition whereby fat deposits around the liver lead to inflammation, swelling, scarring and lasting damage to the organ. Despite being one of the leading causes of liver-related deaths worldwide, the disease has no approved treatment. A protein known as Farnesoid X receptor (or FXR) is increasingly being recognized as a promising drug target for non-alcoholic steatohepatitis. Once activated, FXR helps to regulate the activity of DNA regions which are coding for proteins important for liver health. However, less is known about how FXR may act on non-coding regions, the DNA sequences that do not generate proteins but can be transcribed into RNA molecules with important biological roles. In response, Chen et al. investigated whether FXR activation of non-coding RNAs could be linked to the clinical benefits of hammerhead FXR agonists, a type of synthetic compounds that activates this receptor. To do so, genetic analyses of mouse livers were performed to identify non-coding RNAs generated when FXR was activated by the agonist. These experiments revealed that agonist-activated FXR induced a range of non-coding RNAs transcribed from DNA sequences known as enhancers, which help to regulate gene expression. In particular, hammerhead FXR agonists led to the production of a liver-specific enhancer RNA called Fincor. Additional experiments using tropifexor, a hammerhead FXR agonist currently into clinical trials, showed that this investigational new drug had reduced benefits in a mouse model of non-alcoholic steatohepatitis with low Fincor levels. This suggested that this enhancer RNA may play a key role in mediating the clinical benefits of hammerhead FXR agonists, encouraging further research into its role and therapeutic value.


Subject(s)
Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , Animals , Mice , 60425 , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , RNA, Long Noncoding/genetics , Birds
9.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612820

ABSTRACT

The aim of this Special Issue is to provide an update on the diagnosis and treatment of nonalcoholic fatty liver disease (NAFLD), which is the most prevalent liver disease worldwide; however, there are still no specific treatment agents [...].


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics
10.
Nutrients ; 16(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612954

ABSTRACT

BACKGROUND: Previous studies have suggested that platelets are associated with inflammation and steatosis and may play an important role in liver health. Therefore, we evaluated whether antiplatelet agents can improve metabolic disorder-related fatty liver disease (MASLD). METHODS: The mice used in the study were fed a high-fat-diet (HFD) and were stratified through liver biopsy at 18 weeks. A total of 22 mice with NAFLD activity scores (NAS) ≥ 4 were randomly divided into three groups (HFD-only, clopidogrel (CLO; 35 mg/kg/day), ticagrelor (TIC; 40 mg/kg/day) group). And then, they were fed a feed mixed with the respective drug for 15 weeks. Blood and tissue samples were collected and used in the study. RESULTS: The TIC group showed a significantly lower degree of NAS and steatosis than the HFD group (p = 0.0047), but no effect on the CLO group was observed. Hepatic lipogenesis markers' (SREBP1c, FAS, SCD1, and DGAT2) expression and endoplasmic reticulum (ER) stress markers (CHOP, Xbp1, and GRP78) only reduced significantly in the TIC treatment group. Inflammation genes (MCP1 and TNF-α) also decreased significantly in the TIC group, but not in the CLO group. Nile red staining intensity and hepatic lipogenesis markers were reduced significantly in HepG2 cells following TIC treatment. CONCLUSION: Ticagrelor attenuated NAS and hepatic steatosis in a MASLD mice model by attenuating lipogenesis and inflammation, but not in the CLO group.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Clopidogrel/pharmacology , Clopidogrel/therapeutic use , Ticagrelor/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Inflammation
11.
Ann Hepatol ; 29(2): 101174, 2024.
Article in English | MEDLINE | ID: mdl-38579127

ABSTRACT

INTRODUCTION AND OBJECTIVES: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with a high prevalence worldwide and poses serious harm to human health. There is growing evidence suggesting that the administration of specific supplements or nutrients may slow NAFLD progression. Silymarin is a hepatoprotective extract of milk thistle, but its efficacy in NAFLD remains unclear. MATERIALS AND METHODS: Relevant studies were searched in PubMed, Embase, the Cochrane Library, Web of Science, clinicaltrails.gov, and China National Knowledge Infrastructure and were screened according to the eligibility criteria. Data were analyzed using Revman 5.3. Continuous values and dichotomous values were pooled using the standard mean difference (SMD) and odds ratio (OR). Heterogeneity was evaluated using the Cochran's Q test (I2 statistic). A P<0.05 was considered statistically significant. RESULTS: A total of 26 randomized controlled trials involving 2,375 patients were included in this study. Administration of silymarin significantly reduced the levels of TC (SMD[95%CI]=-0.85[-1.23, -0.47]), TG (SMD[95%CI]=-0.62[-1.14, -0.10]), LDL-C (SMD[95%CI]=-0.81[-1.31, -0.31]), FI (SMD[95%CI]=-0.59[-0.91, -0.28]) and HOMA-IR (SMD[95%CI]=-0.37[-0.77, 0.04]), and increased the level of HDL-C (SMD[95%CI]=0.46[0.03, 0.89]). In addition, silymarin attenuated liver injury as indicated by the decreased levels of ALT (SMD[95%CI]=-12.39[-19.69, -5.08]) and AST (SMD[95% CI]=-10.97[-15.51, -6.43]). The levels of fatty liver index (SMD[95%CI]=-6.64[-10.59, -2.69]) and fatty liver score (SMD[95%CI]=-0.51[-0.69, -0.33]) were also decreased. Liver histology of the intervention group revealed significantly improved hepatic steatosis (OR[95%CI]=3.25[1.80, 5.87]). CONCLUSIONS: Silymarin can regulate energy metabolism, attenuate liver damage, and improve liver histology in NAFLD patients. However, the effects of silymarin will need to be confirmed by further research.


Subject(s)
Non-alcoholic Fatty Liver Disease , Silymarin , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/chemically induced , Silymarin/adverse effects , Liver Function Tests , Dietary Supplements , Randomized Controlled Trials as Topic
12.
Gynecol Endocrinol ; 40(1): 2341701, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38622970

ABSTRACT

OBJECTIVE: To evaluate the effects of alpha lipoic acid (ALA) on hormonal and metabolic parameters in a group of overweight/obese Polycystic Ovary Syndrome (PCOS) patients. METHODS: This was a retrospective study in which thirty-two overweight/obese patients with PCOS (n = 32) not requiring hormonal treatment were selected from the database of the ambulatory clinic of the Gynecological Endocrinology Center at the University of Modena and Reggio Emilia, Italy. The hormonal profile, routine exams and insulin and C-peptide response to oral glucose tolerance test (OGTT) were evaluated before and after 12 weeks of complementary treatment with ALA (400 mg/day). Hepatic Insulin Extraction (HIE) index was also calculated. RESULTS: ALA administration significantly improved insulin sensitivity and decreased ALT and AST plasma levels in all subjects, though no changes were observed on reproductive hormones. When PCOS patients were subdivided according to the presence or absence of familial diabetes background, the higher effects of ALA were observed in the former group that showed AST and ALT reduction and greater HIE index decrease. CONCLUSION: ALA administration improved insulin sensitivity in overweight/obese PCOS patients, especially in those with familial predisposition to diabetes. ALA administration improved both peripheral sensitivity to insulin and liver clearance of insulin. Such effects potentially decrease the risk of nonalcoholic fat liver disease and diabetes in PCOS patients.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Polycystic Ovary Syndrome , Thioctic Acid , Female , Humans , Insulin , Insulin Resistance/physiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications , Obesity/drug therapy , Overweight/complications , Overweight/drug therapy , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/drug therapy , Retrospective Studies , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use
13.
Food Funct ; 15(8): 4614-4626, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38590249

ABSTRACT

The role of vitamin D (VD) in non-alcoholic fatty liver disease (NAFLD) remains controversial, possibly due to the differential effects of various forms of VD. In our study, Sod1 gene knockout (SKO) mice were utilized as lean NAFLD models, which were administered 15 000 IU VD3 per kg diet, or intraperitoneally injected with the active VD analog calcipotriol for 12 weeks. We found that VD3 exacerbated hepatic steatosis in SKO mice, with an increase in the levels of Cd36, Fatp2, Dgat2, and CEBPA. However, calcipotriol exerted no significant effect on hepatic steatosis. Calcipotriol inhibited the expression of Il-1a, Il-1b, Il-6, Adgre1, and TNF, with a reduction of NFκB phosphorylation in SKO mice. No effect was observed by either VD3 or calcipotriol on hepatocyte injury and hepatic fibrosis. Co-immunofluorescence stains of CD68, a liver macrophage marker, and VDR showed that calcipotriol reduced CD68 positive cells, and increased the colocalization of VDR with CD68. However, VD3 elevated hepatocyte VDR expression, with no substantial effect on the colocalization of VDR with CD68. Finally, we found that VD3 increased the levels of serum 25(OH)D3 and 24,25(OH)2D3, whereas calcipotriol decreased both. Both VD3 and calcipotriol did not disturb serum calcium and phosphate levels. In summary, our study found that VD3 accentuated hepatic steatosis, while calcipotriol diminished inflammation levels in SKO mice, and the difference might stem from their distinct cellular selectivity in activating VDR. This study provides a reference for the application of VD in the treatment of lean NAFLD.


Subject(s)
Calcitriol , Calcitriol/analogs & derivatives , Cholecalciferol , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Calcitriol/pharmacology , Mice , Cholecalciferol/pharmacology , Male , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Liver/metabolism , Liver/drug effects , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Inflammation/drug therapy , Mice, Inbred C57BL , Humans , Disease Models, Animal
14.
Front Endocrinol (Lausanne) ; 15: 1344376, 2024.
Article in English | MEDLINE | ID: mdl-38524631

ABSTRACT

Over the last years non-alcoholic fatty liver disease (NAFLD) has grown into the most common chronic liver disease globally, affecting 17-38% of the general population and 50-75% of patients with obesity and/or type 2 diabetes mellitus (T2DM). NAFLD encompasses a spectrum of chronic liver diseases, ranging from simple steatosis (non-alcoholic fatty liver, NAFL) and non-alcoholic steatohepatitis (NASH; or metabolic dysfunction-associated steatohepatitis, MASH) to fibrosis and cirrhosis with liver failure or/and hepatocellular carcinoma. Due to its increasing prevalence and associated morbidity and mortality, the disease-related and broader socioeconomic burden of NAFLD is substantial. Of note, currently there is no globally approved pharmacotherapy for NAFLD. Similar to NAFLD, osteoporosis constitutes also a silent disease, until an osteoporotic fracture occurs, which poses a markedly significant disease and socioeconomic burden. Increasing emerging data have recently highlighted links between NAFLD and osteoporosis, linking the pathogenesis of NAFLD with the process of bone remodeling. However, clinical studies are still limited demonstrating this associative relationship, while more evidence is needed towards discovering potential causative links. Since these two chronic diseases frequently co-exist, there are data suggesting that anti-osteoporosis treatments may affect NAFLD progression by impacting on its pathogenetic mechanisms. In the present review, we present on overview of the current understanding of the liver-bone cross talk and summarize the experimental and clinical evidence correlating NAFLD and osteoporosis, focusing on the possible effects of anti-osteoporotic drugs on NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Osteoporosis , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/etiology , Diabetes Mellitus, Type 2/complications , Fibrosis , Liver Neoplasms/complications , Osteoporosis/drug therapy , Osteoporosis/epidemiology , Osteoporosis/etiology
15.
J Cell Mol Med ; 28(7): e18140, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494851

ABSTRACT

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Fibrosis , Liver Cirrhosis/pathology , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Liver Neoplasms/pathology
16.
Eur J Pharmacol ; 970: 176463, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38461909

ABSTRACT

Inhibition of inflammasome activation is a potential therapeutic strategy for treating nonalcoholic fatty liver disease (NAFLD). Pogostone (PO), an active ingredient in Pogostemon cablin, exhibits various pharmacological properties, including anti-inflammation. However, there are no reports of the hepatoprotective effects of PO in NAFLD induced by a high-fat diet (HFD). Molecular biology methods and molecular docking analysis were used to determine the therapeutic effects and mechanisms of PO in NAFLD in vitro and in vivo. Results showed that in vitro, PO reduced lipid deposition, accelerated fatty acid oxidation (FAO), and inhibited the inflammatory response by elevating mRNA expression of FAO genes and decreasing mRNA expression of proinflammatory genes such as NLRP3. In vivo, PO significantly reduced body weight and liver fat deposition and lowered the generation of inflammatory factors, thereby ameliorating liver fibrosis and liver injury. The hepatoprotective effect of PO against HFD was largely impaired in NLRP3-/- mice. Molecular docking experiments demonstrated a strong interaction between PO and NLRP3. In conclusion, PO decreased fat deposition and the inflammatory response by inhibiting NLRP3 expression, resulting in the alleviation of NAFLD. Our study suggests that PO may be a promising treatment for NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Oils, Volatile , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diet, High-Fat/adverse effects , Molecular Docking Simulation , Liver/metabolism , RNA, Messenger/metabolism , Mice, Inbred C57BL
17.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542065

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant liver ailment attributed to factors like obesity and diabetes. While ongoing research explores treatments for NAFLD, further investigation is imperative to address this escalating health concern. NAFLD manifests as hepatic steatosis, precipitating insulin resistance and metabolic syndrome. This study aims to validate the regenerative potential of chimeric fibroblast growth factor 21 (FGF21) and Hepatocyte Growth Factor Receptor (HGFR) in NAFLD-afflicted liver cells. AML12, a murine hepatocyte cell line, was utilized to gauge the regenerative effects of chimeric FGF21/HGFR expression. Polysaccharide accumulation was affirmed through Periodic acid-Schiff (PAS) staining, while LDL uptake was microscopically observed with labeled LDL. The expression of FGF21/HGFR and NAFLD markers was analyzed by mRNA analysis with RT-PCR, which showed a decreased expression in acetyl-CoA carboxylase 1 (ACC1) and sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) with increased expression of hepatocellular growth factor (HGF), hepatocellular nuclear factor 4 alpha (HNF4A), and albumin (ALB). These findings affirm the hepato-regenerative properties of chimeric FGF21/HGFR within AML12 cells, opening novel avenues for therapeutic exploration in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Proto-Oncogene Proteins c-met/metabolism , Liver/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism
18.
Nutrients ; 16(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542753

ABSTRACT

The primary objective of this investigation was to elucidate the manner in which ginsenoside Rg5 (Rg5) ameliorates nonalcoholic fatty liver disease (NAFLD) via the modulation of the gut microbiota milieu. We administered either a standard diet (ND) or a high-fat diet (HFD), coupled with 12-week treatment employing two distinct doses of Rg5 (50 and 100 mg/kg/d), to male C57BL/6J mice. In comparison to the HFD cohort, the Rg5-treated group demonstrated significant enhancements in biochemical parameters, exemplified by a substantial decrease in lipid concentrations, as well as the reduced expression of markers indicative of oxidative stress and liver injury. This signifies a mitigation of hepatic dysfunction induced by an HFD. Simultaneously, Rg5 demonstrates the capacity to activate the LKB1/AMPK/mTOR signaling pathway, instigating energy metabolism and consequently hindering the progression of NAFLD. Furthermore, we underscored the role of Rg5 in the treatment of NAFLD within the gut-microbiota-liver axis. Analysis via 16S rRNA sequencing unveiled that Rg5 intervention induced alterations in gut microbiota composition, fostering an increase in beneficial bacteria, such as Bacteroides and Akkermansia, while concurrently reducing the relative abundance of detrimental bacteria, exemplified by Olsenella. Furthermore, employing fecal microbiota transplantation (FMT) experiments, we observed analogous outcomes in mice subjected to fecal bacterial transplants, providing additional verification of the capacity of Rg5 to mitigate NAFLD in mice by actively participating in the restoration of gut microbiota via FMT. Drawing from these data, the regulation of the gut microbiota is recognized as an innovative strategy for treating or preventing NAFLD and metabolic syndrome. Consequently, these research findings suggest that Rg5 holds promise as a potential therapeutic agent for NAFLD management.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Non-alcoholic Fatty Liver Disease , Humans , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinases/metabolism , Ginsenosides/metabolism , Diet, High-Fat/adverse effects , RNA, Ribosomal, 16S/metabolism , Mice, Inbred C57BL , Liver/metabolism , Bacteria , TOR Serine-Threonine Kinases/metabolism , Signal Transduction
19.
Diabetes Obes Metab ; 26(5): 1850-1867, 2024 May.
Article in English | MEDLINE | ID: mdl-38468148

ABSTRACT

There are conflicting data on the weight-reducing potential of metformin (MTF) in nondiabetic patients with obesity. The purpose of this systematic review and meta-analysis was to evaluate the effect of MTF on weight and cardiometabolic parameters in adults with overweight/obesity with or without nonalcoholic fatty liver disease (NAFLD) (CRD42018085512). We included randomized controlled trials (RCTs) in adults without diabetes mellitus, with mean body mass index (BMI) ≥ 25 kg/m2, with or without NAFLD, comparing MTF to placebo/control, lifestyle modification (LSM) or a US Food and Drug Administration-approved anti-obesity drug, reporting on weight or metabolic parameters, and extending over at least 3 months. We conducted a systematic search in MEDLINE, EMBASE, PubMed and the Cochrane Library without time limitation (until March 2022). We screened and selected eligible articles, abstracted relevant data, and assessed the risk of bias. All steps were in duplicate and independently. We conducted a random-effects model meta-analysis using Review Manager version 5.3, with prespecified subgroup analyses in case of heterogeneity. We identified 2650 citations and included 49 trials (55 publications). Compared to placebo, MTF was associated with a significant reduction in BMI (mean difference [MD] -0.56 [-0.74, -0.37] kg/m2; p < 0.0001), at doses ranging from 500 to 2550 mg/day, and with a significant percentage change in BMI of -2.53% (-2.90, -2.17) at the dose 1700 mg/day. There was no interaction by baseline BMI, MTF dose or duration, nor presence or absence of NAFLD. There was no significant difference between MTF and LSM. Orlistat was more effective than MTF (at doses of 1000-1700 mg/day) in terms of weight loss, with an MD in BMI of -3.17 (-5.88; -0.47) kg/m2, favouring the former. Compared to placebo/control, MTF improved insulin parameters, while no effect was detected when compared to LSM. A few small trials showed heterogenous effects on liver parameters in patients with NAFLD treated with MTF compared to placebo/control. There was a large variability in the expression of outcome measures and RCTs were of low quality. In conclusion, MTF was associated with a modest weight reduction in obese nondiabetic patients. Further high-quality and better powered studies are needed to examine the impact of MTF in patients with insulin resistance and NAFLD.


Subject(s)
Metformin , Non-alcoholic Fatty Liver Disease , Adult , Humans , Metformin/therapeutic use , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Randomized Controlled Trials as Topic , Obesity/complications , Obesity/drug therapy , Obesity/chemically induced , Overweight/complications , Overweight/drug therapy , Weight Loss
20.
Curr Pharm Des ; 30(2): 100-114, 2024.
Article in English | MEDLINE | ID: mdl-38532322

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a global public health concern. Currently, the cornerstone of NAFLD treatment is lifestyle modification and, if necessary, weight loss. However, compliance is a challenge, and this approach alone may not be sufficient to halt and treat the more serious disease development, so medication is urgently needed. Nevertheless, no medicines are approved to treat NAFLD. Glucagon-like peptide-1 (GLP-1) is an enteropeptide hormone that inhibits glucagon synthesis, promotes insulin secretion, and delays gastric emptying. GLP-1 has been found in recent studies to be beneficial for the management of NAFLD, and the marketed GLP-1 agonist drugs have different degrees of effectiveness for NAFLD while lowering blood glucose. In this article, we review GLP-1 and its physiological roles, the pathogenesis of NAFLD, the correlation between NAFLD and GLP-1 signaling, and potential strategies for GLP-1 treatment of NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/physiology , Glucagon/therapeutic use , Blood Glucose , Insulin Secretion , Glucagon-Like Peptide-1 Receptor , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...